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Abstract

Purpose – To explore the effect of the annulus geometrical parameters on the induced flow rate and the
heat transfer under the conjugate (combined conduction and free convection) thermal boundary conditions
with one cylinder heated isothermally while the other cylinder is kept at the inlet fluid temperature.

Design/methodology/approach – A finite-difference algorithm has been developed to solve the
bipolar boundary-layer equations for the conjugate laminar free convection heat transfer in vertical
eccentric annuli.

Findings – Numerical results are presented for a fluid of Prandtl number, Pr ¼ 0.7 in eccentric
annuli. The geometry parameters of NR2 and E (the fluid-annulus radius ratio and the eccentricity,
respectively) have considerable effects on the results.

Practical implications – Applications of the obtained results can be of value in the heat-exchanger
industry, in cooling of underground electric cables, and in cooling small vertical electric motors and
generators.

Originality/value – The paper presents results that are not available in the literature for the
problem of conjugate laminar free convection in open-ended vertical eccentric annular channels.
Geometry effects having been investigated by considering fluid annuli having radii ratios NR2 ¼ 0.1
and 0.3, 0.5 and 0.7 and four values of the eccentricity E ¼ 0.1, 0.3, 0.5 and 0.7. Moreover, practical
ranges of the solid-fluid conductivity ratio (KR) and the wall thicknesses that are commonly available
in pipe standards have been investigated. Such results are very much needed for design purposes of
heat transfer equipment.
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Nomenclature
a ¼ Location of the positive pole of the

bipolar coordinate system on the
x-axis of the Cartesian coordinate
system (constant in the bipolar
transformation equations, equal to
ri sinh hi or ro sinh ho), m

A ¼ Cross-sectional area of the channel,
pðr2

io 2 r2
oiÞ

a * ¼ Heat transfer coefficient,
q00=ðTw 2 TmÞ

cp ¼ Specific heat of fluid at constant
pressure, kJ/kg K

Dh ¼ Hydraulic or equivalent diameter
of annulus,
2ðrio 2 roiÞ ¼ 2að1 2 NR2Þ
cosechho;m

e ¼ Eccentricity (distance between the
axes of the two cylinders forming
the eccentric annulus), a (coth
ho 2 coth hi), m

E ¼ Dimensionless eccentricity,
e=ðrio 2 roiÞ

F ¼ Dimensionless volumetric flow rate,
F ¼ Uoð1 2 NR2

2Þ
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Gr ¼ Grashof number,
ðgbðTw 2 ToÞD

3
hÞ=g

2

Gr * ¼ Modified Grashof number, ðGrDhÞ=l
h ¼ Coordinate transformation scale

factor, a(cosh h 2 cosj)
H ¼ Dimensionless coordinate

transformation scale factor, h=Dh ¼
ð0:5 sinhðhoÞÞ=ðð1 2 NÞ �
ðcoshðhÞ2 cosðjÞÞÞ

HFi,ex ¼ Dimensionless local heat flux on
inner interface at channel exit

HFo,ex ¼ Dimensionless local heat flux on
outer interface at channel exit

i ¼ Index for bi-polar grid in the
h-direction and the cylindrical grid
in the radial direction

j ¼ Index for the bi-polar grid in the
j-direction and the cylindrical grid
in the tangential direction

kf ¼ Thermal conductivity of fluid, W/m.K
ks ¼ Thermal conductivity of solid, W/m.K
KR ¼ Solid-fluid conductivity ratio, ks/kf

l ¼ Height of annulus, m
L ¼ Dimensionless height of channel

(value of Z at channel exit),
1/Gr *

M ¼ No. of intervals in each of the j and f
directions

N ¼ Number of intervals in the
h-direction

NR1 ¼ Ratio between inner radius of inner
cylinder and inner radius of outer
cylinder, rii=rio

NR2 ¼ Ratio between outer radius of inner
cylinder and inner radius of outer
cylinder (Fluid annulus radius ratio),
roi=rio

NR3 ¼ Dimensionless inner radius of outer
cylinder, rio=rio ¼ 1

NR4 ¼ Ratio between outer radius of outer
cylinder and inner radius of outer
cylinder, roo=rio

NSI ¼ No. of radial intervals in the inner
cylinder wall

NSO ¼ No. of radial intervals in the outer
cylinder wall

Nui ¼ Local Nusselt number at any point on
the inner wall, a*i Dh=k

Nuo ¼ Local Nusselt number at any point on
the outer wall, a*oDh=k

Nui ¼ Nusselt number averaged around the
periphery of the inner wall,

2ð12N Þ
Np

R p
0 NuiH ðhi; jÞdj

Nuo ¼ Nusselt number averaged around the
periphery of the outer wall,
2ð12N Þ

p

R p
0 NuoH ðho; jÞdj

Nui,ex ¼ Nusselt number on inner interface at
channel exit

Nuo,ex ¼ Nusselt number on outer interface at
channel exit

Nui;e ¼ Average Nusselt number on inner
solid-fluid interface at the channel exit

Nuo;e ¼ Average Nusselt number on outer
solid-fluid interface at the channel exit

p ¼ Pressure of fluid inside the channel at
any cross-section, N/m2

P ¼ Dimensionless Pressure defect of fluid
inside the channel at any cross section,

P 0D4
h

rl 2g 2Gr*2

ps ¼ Hydrostatic pressure, rgz, N/m2

P 0 ¼ Pressure defect at any point, p2 ps,
N/m2

q00 ¼ local heat flux at either boundary of
the annulus defined to be positive
when it heats the fluid,
2k›T=›n* ¼ ^ðk=hÞð›T=›hÞ
where the upper and lower signs
stand for the inner and outer walls,
respectively, in case of fluid heating
and vice versa in case of fluid cooling

q ¼ heat gained or lost by fluid from the
entrance up to a particular elevation
in the annulus, ro f cp (Tm 2 To)

�q ¼ heat gained or lost by fluid from the
entrance up to the annulus exit, i.e.
value of q at z ¼ l, rofcp( �Tm 2 To)

�Q ¼ Dimensionless heat absorbed up to
the annulus exit, i.e. values of Q at
z ¼ l, Fum,ex

rii ¼ Inner radius of inner cylinder, m
roi ¼ Outer radius of inner cylinder, m
rio ¼ Inner radius of outer cylinder, m
roo ¼ Outer radius of outer cylinder, m
R ¼ Dimensionless radial coordinate,

r=rio

DRi ¼ (NR2 2 NR1)/NSI
DRo ¼ (NR4 2 NR3)/NSO
To ¼ Ambient or fluid entrance

temperature, K
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Tw ¼ Isothermal temperature of heated
wall, K

u ¼ Axial (stream wise) velocity
component, m/s

uo ¼ Entrance axial velocity, �u
�u ¼ Average axial velocity (volume flow

rate per unit area),
R
A u dA=A

U ¼ Dimensionless axial velocity at any
point, ður2

ioÞ=lgGr*
Uo ¼ Dimensionless axial velocity at

annulus entrance, ðuor
2
ioÞ=lgGr*

v ¼ h-velocity component, m/s
V ¼ Velocity vector or dimensionless

h-velocity component, nDh=g
w ¼ j-velocity component, m/s
W ¼ Dimensionless j-velocity component,

wDh=g
x ¼ The first transverse direction in the

Cartesian coordinate system,
x ¼ ða sinhðhÞÞ=ðcoshðhÞ2 cosðjÞÞ

X ¼ Dimensionless value of x, x/rio

Xf ¼ Dimensionless x-coordinate of the
fluid annulus

Xsi ¼ Dimensionless x-coordinate of the
inner cylinder wall

Xso ¼ Dimensionless x-coordinate of the
outer cylinder wall

z ¼ Axial coordinate in both the
Cartesian and bipolar coordinate
systems, m

Z ¼ Dimensionless axial coordinate in
both the Cartesian and bipolar
coordinate systems, z=lGr*

DZ ¼ Dimensionless Axial step
increment, Dz=lGr*

Greek letters

b ¼ Volumetric coefficient of thermal
expansion, K21

di ¼ Dimensionless thickness of inner
cylinder wall, NR2 2 NR1

do ¼ Dimensionless thickness of outer
cylinder wall, NR4 2 NR3

h ¼ First transverse bi-polar coordinate
hi ¼ Value of h on the inner interface,

hi ¼ loge½ðNR2ð1 þ E 2Þ þ ð1 2

E 2ÞÞ=ð2NR2EÞþ ððNR2ð1 þ E 2Þ þ

ð1 2 E 2ÞÞ=ð2NR2EÞÞ
2 2 1�

ho ¼ Value of h on the outer interface,
ho ¼ loge½ðNR2ð1 2 E 2Þ þ ð1 þ

E 2Þ=ð2EÞþ ððNR2ð1 2 E 2Þ þ ð1 þ

E 2ÞÞ=ð2EÞÞ2 2 1�
Dh ¼ Numerical grid mesh size in

h-direction, ðhi 2 hoÞ=N
u ¼ Dimensionless temperature,

T 2 Toð Þ= Tw 2 Toð Þ for
isothermal walls case

uf ¼ Value of u in the fluid annulus
um,ex ¼ Mean bulk temperature at channel exit
usi ¼ Value of u in the inner solid wall
uso ¼ Value of u in the outer solid wall
m ¼ Dynamic viscosity of fluid, N.s/m2

g ¼ Kinematic viscosity of fluid, m=r,
m2/sec

r ¼ Density of fluid, kg/m3

C ¼ Normalized value of j, j=p
a ¼ Thermal diffusivity of fluid, k=rcp,

m2/sec
j ¼ Second transverse bi-polar point.
Dj ¼ Numerical grid mesh size in

j-direction, p=M
f ¼ Angle along the cylinder walls
Df ¼ Numerical grid mesh size in

f-direction, p=M

Subscripts

f ¼ fluid
i ¼ inner wall
fd ¼ fully developed
o ¼ outer wall
s ¼ solid or static

Introduction
The study of steady laminar induced flow in vertical eccentric annuli with conjugate
heat transfer is of great importance because of its many engineering applications in
electrical, nuclear, solar and thermal storage fields. A typical application is that of a
gas cooled nuclear reactor, in which cylindrical fissionable fuel elements are placed
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axially in vertical coolant chambers within the graphite moderator; the cooling gas is
flowing along the channel parallel to the fuel element. In such a system, laminar free
convection may provide the sole means of the necessary cooling during the shut down
or accident periods.

In conventional heat transfer analyses, it is common practice to consider the
temperature or the heat flux at the fluid-wall interface as known a priori. Thus, the
energy equation for the fluid alone has to be solved. The results thus obtained are good
only for heat transfer in flows bounded by walls having extremely small thermal
resistance, i.e. very high thermal conductivity and/or very small thickness. However, in
actual practice, the wall thermal resistance is finite and the thermal conditions at the
fluid-wall interface are different from their counterparts imposed at the other surface of
the solid walls. Such type of problems, where heat conduction in the solid is coupled
with convective heat transfer in the fluid, is often referred to as conjugate problems. If
the bounding cylinder walls are thick and/or have low thermal conductivity,
conjugation (coupling of conduction and convection) must be taken into account as it
can significantly affect the heat transfer, otherwise it can be neglected.

Considerable work has been done to study the problem of flow and conjugate heat
transfer in various geometries and annuli, both concentric and eccentric. Anand and
Tree (1987) studied the effect of axial conduction in a tube wall on the steady-state
laminar convective heat transfer. Kim and Anand (1990) numerically investigated the
effect of wall conduction on the free convection between asymmetrically heated vertical
plates with uniform wall heat flux. Kim et al. (1991) numerically studied laminar free
convection heat transfer in channels formed between series of vertical parallel plates
with an embedded line heat source in order to investigate the effect of repeated
boundary condition and wall conjugation on mass flow rate, maximum surface
temperature, and average surface Nusselt number. Sakakibara et al. (1987), analytically,
investigated the steady conjugate heat transfer problem in an annulus with a heated
core and an insulated outside tube when the laminar flow is hydrodynamically fully
developed. El-Shaarawi et al. (1995) presented a finite-difference scheme to solve the
transient conjugate forced convection in a concentric annulus with simultaneously
developing hydrodynamic and thermal boundary layers. Using a finite-difference
technique, El-Shaarawi and Negm (1999) solved the laminar conjugate natural
convection problem in vertical open-ended concentric annuli.

In spite of the many studies reported in the literature for the conventional case of
either forced or free convection in eccentric annuli (Shu and Wu, 2002; Redberger and
Charles, 1962; Cheng and Hwang, 1968; Trombetta, 1972; Manglik and Fang, 1995;
Feldman et al., 1982a, b; El-Shaarawi et al., 1998; El-Shaarawi and Mokheimer, 1998,
1999), a thorough literature survey revealed that there are only two works available for
the conjugate case. The first is that of El-Shaarawi and Haider (2001) for the
forced-convection case and the second is that of Jamal (2002) for free convection.
El-Shaarawi and Haider (2001) presented forced-convection results for a fluid of
Prandtl number, Pr ¼ 0.7 flowing in a fluid annulus of radius ratio, NR2 ¼ 0.5 with
eccentricity, E ¼ 0.1, 0.3, 0.5 and 0.7. On the other hand, Jamal (2002) presented
free-convection results under two different thermal boundary conditions for a fluid of
Pr ¼ 0.7 flowing in eccentric annuli having a wide range of geometrical parameters
(E ¼ 0.1, 0.3, 0.5, 0.7 and NR2 ¼ 0.1, 0.3, 0.5, 0.7) and a wide range of conjugation
parameters (solid-fluid thermal conductivity ratio, KR ¼ 1, 5, 10, 50, 100, 1,000 and
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four pairs of inner and outer cylinder wall dimensionless thicknesses, do and di ¼ 0.02
and 0.01; 0.1 and 0.05; 0.2 and 0.1; and 0.4 and 0.2).

The present paper presents numerical results that explore the effect of the annulus
geometrical parameters on the induced flow rate and the heat transfer under the
conjugate (combined conduction and free convection) thermal boundary conditions
with one cylinder heated isothermally while the other cylinder is kept at the inlet fluid
temperature. It is worth mentioning that the conjugation, due to the presence of solid
walls of finite thermal resistances, causes the free-convection results (such as the
induced flow rate and the corresponding channel height) to vary from that
corresponding to the conventional case.

Governing equations
Figure 1 shows the plan and the elevation of the geometry under consideration. The
vertical eccentric annulus, shown in Figure 1, is of finite height, open at both ends and
is immersed in a stagnant Newtonian fluid of infinite extent maintained at constant
temperature To. Free convection flow is induced inside this annular channel as a result
of heating one of the channel walls isothermally while keeping the other wall at
ambient temperature. Thus, two cases are under investigation. The first case is named
case (I) in which the heated wall is the inner surface of the inner cylinder whereas the
other case is called case (O) in which the heated wall is the outer surface of the outer
cylinder. The fluid enters the channel at the ambient temperature To. It is evident from
Figure 1, that the eccentric annular geometry is symmetric about line AB, therefore,
only half of the geometry need to be considered in the analysis. Figure 2 shows the 2-D
cross-section of that half (with the numerical mesh points).

The fluid is assumed to be Newtonian. The flow is steady, laminar, enters the
eccentric annulus with a uniform velocity distribution (Uo) and then the development
of its hydrodynamic and thermal boundary layers occurs. Body forces in other than the
vertical direction, viscous dissipation, internal heat generation and radiation heat
transfer are absent. Unless the channel is sufficiently high, fully developed flow
conditions cannot be achieved. The governing equations describing the flow and heat
transfer through the eccentric annulus are the well known continuity, momentum and
energy equations given by Hughes and Gaylord (1964) in a general orthogonal
curvilinear coordinate system.

The bi-polar coordinate system has been used in this investigation to describe the
flow and heat transfer in the eccentric fluid annulus. In this bipolar coordinate system,
the boundary surfaces of the fluid annulus are corresponding to constant values of one
of the coordinates (h) and the other coordinate (j) comprises another set of eccentric
annuli whose centers lie on the y-axis and orthogonally intersect the boundaries of the
fluid annulus. This bi-polar coordinate system is shown in Figure 3. However, since the
cylinder solid walls have uniform thicknesses, the cylindrical coordinate system is
more appropriate for these solid walls. Therefore, the energy equation for each of the
inner and outer solid cylinder walls is expressed in cylindrical coordinates. Some
parabolic-flow assumptions (El-Shaarawi and Mokheimer, 1999) will be used to
simplify the governing equations. These assumptions include: the pressure is a
function of the axial coordinate only ð›p=›h ¼ ›p=›j ¼ 0Þ, the axial diffusions of
momentum and energy are neglected ð›2=›z 2 ¼ 0Þ; and the h-velocity component (v) is
much smaller than the j- and z-velocity components (w and u).
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Introducing the dimensionless parameters given in the nomenclature, carrying out the
order of magnitude analysis and taking into consideration that the latter assumption
results in dropping the h-momentum equation, the governing equations can be written
in the following dimensionless forms:

Figure 1.
Two-dimensional plan and
elevation of the geometry
under consideration
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Figure 2.
Two-dimensional half

symmetric mesh of
eccentric annuli,

NR2 ¼ 0.5, E ¼ 0.5,
NSO ¼ 10, NSI ¼ 5,

N ¼ 15, M ¼ 25, di ¼ 0.05,
do ¼ 0.1

Fluid Annulus Mesh

Inner wall mesh

Outer wall mesh
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Bi-polar coordinate system

Second pole
at (-a, 0)
or h =-∞

First pole
at (a, 0)
or h = ∞

x = const.

h = cost.

x=0

x h=h0

h=h1

a a

0

y

x

h 
=

 0

r0
r1

Heat transfer
in vertical

eccentric annuli

467



. Continuity equation:

›ðHW Þ

›j
þ

›ðHV Þ

›h
þ 4ð1 2 NR2Þ

2 ›ðUH
2Þ

›Z
¼ 0 ð1Þ

. Momentum equation in Z-direction:

W

H

›U

›j
þ

V

H

›U

›h
þ 4ð1 2 NR2Þ

2U
›U

›Z
¼

u

4ð1 2 NR2Þ
2
2

1

4ð1 2 NR2Þ
2

›P

›Z

þ
1

H 2

›2U

›h 2
þ

›2U

›j 2

� � ð2Þ

. Momentum equation in j-direction:

W

H

›W

›j
þ

V

H 2

› HWð Þ

›h
þ 4ð1 2 NR2Þ

2U
›W

›Z
2

V 2

H 2

›H

›j

¼
1

H 3

›2ðHW Þ

›h2
þ

›2ðHW Þ

›j 2

� �
2

2

H 4

›ðHW Þ

›h
2

›ðHV Þ

›j

� �
›H

›h

þ
8ð1 2 NR2Þ

2

H 2

›H

›j

›U

›Z

ð3Þ

. Energy equation for fluid:

W

H

›u

›j
þ

V

H

›u

›h
þ 4ð1 2 NR2Þ

2U
›u

›Z
¼

1

Pr H 2

›2u

›h 2
þ

›2u

›j 2

� �
ð4Þ

. Energy equation for solid walls:

›2us

›R 2
þ

1

R

›us

›R
þ

1

R 2

›2us

›f 2
¼ 0 ð5Þ

For outer cylinder, us ¼ uso and R vary from NR3 ¼ 1 to NR4 and for inner cylinder,
us ¼ usi and R vary from NR1 to NR2. The continuity equation (1) subjected to the
no-slip condition at the walls can be written in the following integral form:

�U ¼
8ð1 2 NR2Þ

pð1 þ NR2Þ

Z p

0

Z hi

ho

UH 2 dh dj ð6Þ

It is worth mentioning here that the assumption “the h-velocity component (v) is
much smaller than the j- and z-velocity components (w and u)” led to the drop of the
h-momentum (roughly the radial-like direction) equation while the j-momentum
(roughly the azimuthal-like direction) equation remained. Certainly in the concentric
annulus configuration, the radial velocity is non-zero (in the developing region) and
the azimuthal velocity is identically zero. On the other hand, in the eccentric annulus
case both the radial-like (the h-direction) and the azimuthal-like (the j-direction)
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components are non-zero in the developing region. However, with very low values of
eccentricity one may say, under the boundary-layer theory assumptions, that both
the j-velocity (the azimuthal-like) component (W) and theh-velocity (the radial-like)
component (V) are of lower orders of magnitude than the axial velocity component
(U) and consequently, as Feldman et al. (1982a, b) did while handling the forced flow
problem, both the h- and the j-momentum equations might be dropped. Nevertheless,
as the eccentricity increases the value of the j-velocity (the azimuthal-like) component
(W) increases and becomes larger than the h-velocity (the radial-like) component (V).
Moreover, the dropping of the h-momentum equation does not mean that the
h-velocity (the radial-like) component (V) does not exist in the developing region; it
simply implies that this velocity component is of lower order of magnitude than the
other two components (as can be easily seen V still exists in all the above first four
governing equations of the fluid domain). Additionally, with developing confined
flows in pipes, parallel-plate channels and concentric annuli, the boundary-layer
theory shows that the transverse-momentum equation (radial-momentum equation, in
case of pipes and annuli) is the equation that can be dropped.

Equations (1)-(5) are subject to the following boundary conditions for:
. Z ¼ 0 and ho , h , hi, V ¼ W ¼ 0, and U ¼ U o, P ¼ 2U 2

o; uf ¼ us ¼ 0.0;
. Z ¼ L and ho , h , hi, P ¼ 0;
. Z $ 0 and h ¼ hi or h ¼ ho, U ¼ V ¼ W ¼ 0;
. case (I), usi ¼ 1.0 and uso ¼ 0.0 and for case (O), usi ¼ 0.0 and uso ¼ 1.0;
. Z . 0 and j ¼ 0 and p (the line of symmetry):

›V

›j
¼

›W

›j
¼

›U

›j
¼

›u

›j
¼

›us

›f
¼ 0

. Z . 0 and R ¼ NR2 and R ¼ NR3 ¼ 1 (i.e. the interfaces) uf ¼ us, continuity of
temperature, and:

kf
1

H

›u

›h
i þ

1

H

›u

›j
j

� �
¼ ks

›us

›R
i þ

1

R

›us

›f
j

� �

continuity of heat flux, where i, unit vector in the h and R directions; j, unit vector
in the j and f directions.

The use of two coordinate systems rather than one was proven to be successful in
describing the conjugate problem for the forced convection case (El-Shaarawi and
Haider, 2001) and consequently has been applied in the present free convection case.

In the above boundary conditions as well as the integral continuity equation (6) it
has been assumed that the flow enters the channel with a flat velocity profile at a value
equal to the mean axial velocity in the annular gap. For boundary-layer models of
confined flows, such an irrotational, uniform velocity profile is a generally accepted
assumption provided that the entrance is well rounded. Also, this assumption is best
justified by the results of Dyler and Fowler (1966) who concluded that “any reasonable
form of entrance velocity profile may be assumed when considering overall effects.”
However, the discussion presented in the next paragraph clarifies the basis upon which
such assumption is dependent.
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The flow is considered to originate from an infinite reservoir where the fluid has
zero velocity. In this case, the fluid in this reservoir is initially irrotational; that is, its
vorticity is equal to zero. Upstream of the channel entrance, it is postulated that the
force field is only the gravitational field, the fluid has a constant density, and the
viscous forces and the corresponding friction losses are negligible. Under such
assumptions, the Bernoulli constant is the same for all the streamlines and the
subsequent flow, leading to the channel inlet, will remain irrotational.

Applying Bernoulli’s equation at the entrance cross section, and noting that the
origin of the coordinate system is located at the inlet, shows that the dimensionless
pressure defect, P, at entry is equal to 2U 2

o=2. Assuming that the streamlines in the
emerging flow are parallel, the pressure defect at the channel exit could be specified as
zero. This assumption is in agreement with all previous theoretical studies and is
equivalent to assuming that the flow from the outlet section is a free jet.

Also, it is important to notice that the pressure appears in the governing equations
as ›P/›Z, i.e. 1st order differentiation. Consequently, only one boundary condition for
the pressure is needed not two. In this regard, it will be shown in the section pertinent
to the numerical method of solution that only the initial condition for the pressure at
inlet (Z ¼ 0) is the one that is used. On the other hand, the boundary condition for the
pressure at exit (P ¼ 0 at Z ¼ L) is not explicitly imposed on the solution but is only
continually checked for satisfaction as the solution proceeds in the axial marching
direction. The satisfaction of such a boundary condition for the pressure at exit (P ¼ 0
at Z ¼ L) establishes the unknown channel height (L) since the present model and
method of solution are handling the confined free convection problem under
consideration in an inverse manner, i.e. obtaining an unknown channel height for a
given volumetric flow rate (in other words a given inlet velocity Uo). Thus, the
condition for the pressure at exit (P ¼ 0 at Z ¼ L) is a constraint rather than being a
boundary condition. For each given value of Uo (i.e. a given flow rate) in an annulus of
given NR2 and E, the numerical technique searches for the location at which such a
constraint is satisfied since it establishes the unknown channel height.

Numerical analysis
The above governing equations are numerically treated using a finite-difference
technique to solve for the three velocity components, pressure and temperature in the
fluid field and for the temperature in the two solid cylinders. Using backward
finite-differences to express all first derivatives with respect to Z and the first
derivative of (HV) with respect to h in the continuity equation and replacing the second
and other first order derivatives in h and j directions by central finite-differences,
equations (1)-(6) can be written in the following finite-difference forms:

. Continuity equation:

H ði; jþ 1ÞW ði; jþ 1Þ2 H ði; j2 1ÞW ði; j2 1Þ

2Dj

þ
H ði; jÞV ði; jÞ2 H ði2 1; jÞV ði2 1; jÞ

Dh

þ 4ð1 2 NR2Þ
2H 2ði; jÞ

U ði; jÞ2 U *ði; jÞ

DZ
¼ 0

ð7Þ
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. Z-Momentum equation:

W *ði; jÞ

H i; j
� � U ði; jþ1Þ2U ði; j21Þ

2Dj
þ
V *ði; jÞ

H i; j
� � U ðiþ1; jÞ2U ði21; jÞ

2Dh

þ4ð12NR2Þ
2U *ði; jÞ

U ði; jÞ2U *ði; jÞ

DZ

¼2
1

4ð12NR2Þ
2

Pði; jÞ2P*ði; jÞ

DZ
þ

uf

4ð12NR2Þ
2
þ

1

H ði; jÞ
� �2

:
U ði21; jÞ22U ði; jÞþU ðiþ1; jÞ

Dh
� �2

þ
U ði; j21Þ22U ði; jÞþU ði; jþ1Þ

Djð Þ2

" #
ð8Þ

. j-Momentum equation:

W *ði; jÞ

H i; j
� � W ði; jþ1Þ2W ði; j21Þ

2Dj
þ

V *ði; jÞ

H i; j
� �� �2

�
H ðiþ1; jÞW ðiþ1; jÞ2H ði21; jÞW ði21; jÞ

2Dh

þ4ð12NR2Þ
2U *ði; jÞ

W ði; jÞ2W *ði; jÞ

DZ

2
ðV *ði; jÞÞ2

H i; j
� �� �2

H ði; jþ1Þ2H ði; j21Þ

2Dj

¼
1

ðH ði; jÞÞ3

H ði21; jÞW ði21; jÞ22H ði; jÞW ði; jÞþH ðiþ1; jÞW ðiþ1; jÞ

Dh
� �2

(

þ
H ði; j21ÞW ði; j21Þ22H ði; jÞW ði; jÞþH ði; jþ1ÞW ði; jþ1Þ

Djð Þ2

	

2
2

ðH ði; jÞÞ4
H ðiþ1; jÞ2H ði21; jÞ

2Dh

� �

�
H ðiþ1; jÞW ðiþ1; jÞ2H ði21; jÞW ði21; jÞ

2Dh




2
H ði; jþ1ÞV ði; jþ1Þ2H ði; j21ÞV ði; j21Þ

2Dj

	

þ
8ð12NR2Þ

2

ðH ði; jÞÞ2
H ði; jþ1Þ2H ði; j21Þ

2Dj

U ði; jÞ2U *ði; jÞ

DZ

ð9Þ
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. Energy equation for fluid:

W *ði; jÞ

H i; j
� � ufði; jþ 1Þ2 ufði; j2 1Þ

2Dj
þ

V *ði; jÞ

H i; j
� � ufði þ 1; jÞ2 ufði2 1; jÞ

2Dh

þ 4ð1 2 NR2Þ
2U *ði; jÞ

ufði; jÞ2 u*f ði; jÞ

DZ

¼
1

PrðH ði; jÞÞ2

ufði2 1; jÞ2 2ufði; jÞ þ ufði þ 1; jÞ

ðDhÞ2

�

þ
ufði; j2 1Þ2 2ufði; jÞ þ ufði; jþ 1Þ

ðDjÞ2

�
ð10Þ

. Energy equation for outer solid wall:

usoði þ 1; jÞ2 2usoði; jÞ þ usoði2 1; jÞ

ðDRoÞ
2

þ
1

½NR4 2 ði2 1ÞDRo�

usoði þ 1; jÞ2 usoði2 1; jÞ

2DRo

þ
1

NR4 2 ði2 1ÞDRo

� �2 usoði; jþ 1Þ2 2usoði; jÞ þ usoði; j2 1Þ

ðDfÞ2
¼ 0

ð11Þ

. Energy equation for inner solid wall:

usi i þ 1; j
� �

2 2usi i; j
� �

þ usi i2 1; j
� �

DRið Þ2

þ
1

NR2 2 i2 1ð ÞDRi

� � usi i þ 1; j
� �

2 usi i2 1; j
� �

2DRi

þ
1

NR2 2 i2 1ð ÞDRi

� �2

usi i; jþ 1
� �

2 2usi i; j
� �

þ usi i; j2 1
� �

Df
� �2

¼ 0

ð12Þ

. Integral form of the continuity equation:

�U ¼
8 1 2 NR2ð Þ

p 1 þ NR2ð Þ

XM
j¼2

XN
i¼2

U ði; jÞ H ði; jÞ
� �2

þ0:5
XN
i¼2

U ði; 1Þ H ði; 1Þ
� �2

 

þU i;M þ 1
� �

H i;M þ 1
� �� �2

�
DhDj

ð13Þ

The finite-difference equations (8)-(10) are linearized by assuming that, where ever the
product of two unknowns occur, one of them is given approximately by its value at
the previous axial step, the variable subscripted with an asterisk ( *). Moreover, in
equation (9), the finite difference representation of the j-momentum equation (3), all
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the values of V have been deliberately taken at the previous axial step. This makes
equation (9) locally (i.e. within one axial step) uncoupled from the continuity
equation (7) and makes the finite-difference equations (7)-(13) represent a complete
mathematical model of seven equations in seven unknowns (U, V, W, P, uf, usi, uso).
Hence, it enables these equations to be numerically solved in the manner described
later in the next section. The dependent variables (U, V, W, P, uf, usi, uso) are
computed, for each vertical (axial) location (Z) at the intersections of the grid lines, i.e.
the mesh points. The solution progresses from the lower entrance of the channel to its
upper exit in axial steps, the size of which increases with Z.

One may raise the issue that the integral form of the continuity equation (6) is not an
independent equation. In fact, equation (6) is simply an integrated form of equation (1)
subject to the appropriate boundary conditions. Thus, equations (1) and (6) are not
independent and in the fluid domain there are five variables (U,V,W, P and u). Owing to
the dropping of theh-momentum equation, there are only four governing equations (1 to
4; the continuity, axial-momentum, j-momentum, and energy equations) and their
finite-difference forms (7)-(10). Therefore, it may appear that we are solving four
equations in five unknowns and contradicting a rule of thump that the number of
equations should equal the number of unknowns. This issue can be clarified by one of the
two following arguments.

Firstly, one should notice that the linearized numerical technique used here
depends, as stated above, on the use of the values of U, V and W in the coefficients of
the convective terms (on the left hand sides of equations (2)-(4)) as taken from the
preceding axial step. In other words, within each axial step, the values of U, V and W
in the coefficients of the convective terms (on the left hand sides of equations (2)-(4))
are assumed constants at their previous values (at the preceding axial station).
Accordingly, this linearization technique enables the decoupling, within each axial
step, of the energy equations (4) and (5) from the momentum and continuity equations.
This in turn enables the numerical solution of the energy equations in the fluid and
solid domains first within each axial step. Thus, the numerical solution starts by
solving the energy equations (4) and (5) to obtain the values of uf and us at the second
axial station. With these obtained values of uf and the known linearized coefficients U,
V and W on the left hand side of equation (3), the integral continuity equation (6)
together with the linearized axial momentum equation (3) become two equations in the
two unknowns U and P. Thus, equations (3) and (6) can be numerically solved to
obtain the values of U and P at the second axial station. Now, with the obtained
values of U and the known linearized coefficients U, V and W on the left hand side of
equation (2) as well as all other values of V on the right hand side of equation (2) to
be taken from the preceding axial step, the j-momentum equation (2) can be solved on
its own to get the values of W at the second axial station. Then, the application of a
numerical form of the differential continuity equation (1) at the second cross section
using the already obtained values of U and W will allow the solution for the values of
V at this second cross-section. Repeating this process at each next axial step allows a
marching solution for the governing parabolic differential equations.

Secondly, the four equations in the fluid domain, with the assumption that pressure
is only a function of Z, plus an “extra” boundary condition for V, are sufficient to solve
for the five unknowns. The system of equations we use has only a first order derivative
of V with respect to h; therefore it can only support a single h-direction boundary
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condition of V. By imposing two such boundary conditions (zero velocity at both walls)
one has an additional piece of information that makes the system of equations complete.

Thermal boundary conditions are imposed on the inner surface of the inner cylinder
and the outer surface of the outer cylinder. The thermal conditions at the two fluid-wall
interfaces are not known; they depend on the properties and flow characteristics of the
fluid as well as the dimensions and properties of the solid walls. Having the governing
equations for the fluid in bipolar coordinates and the energy equations for the solid
walls in cylindrical coordinates generates unmatched grid points on both the interfaces.
Continuity of temperature and heat flux at the solid fluid interfaces provides the
necessary link. Equations representing the continuity of temperature and heat flux are
applied to determine the thermal conditions on the cylindrical mesh points at each of
the solid-fluid interfaces whereas interpolation equations are applied to calculate the
temperature on the bipolar mesh points at each of the interfaces. At the interface points,
continuity of temperature and continuity of heat flux can be expressed in
finite-difference forms as follows.

At the corner points I through IV, shown in Figure 2, continuity of temperature and
heat flux are expressed by the following relations, in which b, n, c and s are numerical
indices replacing the index i at these corners; the first pair (b and n) in the fluid zone
and the second pair (c and s) in the solid zone, respectively.

At j ¼ 0 (Widest Gap, j ¼ 1) [Points I (on outer interface) and II (on inner
interface)]

uf bþ 1; 1
� �

¼ us sþ 1; 1
� �

;

KR*H bþ 1; 1
� � us cþ 1; 1

� �
2 us c; 1

� �
DR

� �
¼

uf nþ 1; 1
� �

2 uf n; 1
� �

Dh

ð14Þ

At j ¼ p (Narrowest Gap, j ¼ M þ 1) [Points III (on inner interface) and IV (on outer
interface)]

uf bþ 1;M þ 1
� �

¼ us sþ 1;M þ 1
� �

;

KR*H bþ 1;M þ 1
� � us cþ 1;M þ 1

� �
2 us c;M þ 1

� �
DR

� �

¼
uf nþ 1;M þ 1
� �

2 uf n;M þ 1
� �

Dh

ð15Þ

The continuity of temperature and heat flux on rest of the mesh points (2 # j # M ) are
expressed using the following relations:

uf bþ 1; j
� �

¼ us sþ 1; j
� �

;

uf bþ 1; jþ 1
� �

¼ us sþ 1; jþ 1
� �

;

uf bþ 1; j2 1
� �

¼ us sþ 1; j2 1
� �

;
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KR*H bþ 1; j
� � us cþ 1; j

� �
2 us c; j

� �
DR

þ
1

NR

us sþ 1; jþ 1
� �

2 us sþ 1; j2 1
� �

2Df

� �

¼
uf nþ 1; j
� �

2 uf n; j
� �

Dh
þ
uf bþ 1; jþ 1
� �

2 uf bþ 1; j2 1
� �

2Dj

ð16Þ

where 2 # j # M
In equations (14)-(16):

us ¼ uso ðFor outer interfaceÞ us ¼ usi ðFor inner interfaceÞ

DR ¼ DRo ðFor outer interfaceÞ DR ¼ DRi ðFor inner interfaceÞ

NR ¼ NR3 ðFor outer interfaceÞ NR ¼ NR2 ðFor inner interfaceÞ

The values of the numerical indices b, c, n, and s are:

b ¼ o ðFor outer interfaceÞ b ¼ N ðFor inner interfaceÞ

C ¼ NSO ðFor outer interfaceÞ c ¼ 1 ðFor inner interfaceÞ

n ¼ 1 ðFor outer interfaceÞ n ¼ N ðFor inner interfaceÞ

s ¼ NSO ðFor outer interfaceÞ s ¼ 0 ðFor inner interfaceÞ

Interpolation of temperature on interfaces
At both interfaces, temperature at every mesh point of the bipolar grid is evaluated by
interpolation relations using the temperatures at the two neighboring mesh points of
the cylindrical grid. The x-coordinate of the grid points is used for this purpose. This
interpolation can be expressed as follows (Figure 2).

Fluid temperatures on the outer interface

uf 1; j
� �

¼ uso NSO þ 1; jj
� �

þ uso NSO þ 1; jjþ 1
� �

2 uso NSO þ 1; jj
� �� �

�
X f 1; j
� �

2 X so 1; jj
� �

X so 1; jjþ 1
� �

2 X so 1; jj
� �

" #
ð17Þ

Fluid temperatures on the inner interface

uf N þ 1; j
� �

¼ usi 1; jj
� �

þ usi 1; jjþ
� �

2 usi 1; jj
� �� � X f N þ 1; j

� �
2 X si 1; jj

� �
X si 1; jjþ 1
� �

2 X si 1; jj
� �

" #
ð18Þ

Method of solution
In practice, the dimensions of the channel (l and D) and ambient temperature are
normally known while the volumetric flow rate f is unknown. However, the present
model and method of solution are handling the problem in a reverse manner,
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i.e. obtaining an unknown dimensionless channel height (L) for a given dimensionless
volumetric flow rate (F). Therefore, the condition P ¼ 0 at Z ¼ L is not explicitly
imposed on the solution, but continually checked for satisfaction; recall that the
governing equations (1)-(6) are parabolic in Z and need only one condition with respect
to Z. Owing to symmetry, these equations need to be solved in only half of the domain,
i.e. for 0 # j # p. The problem under investigation is governed by seven
dimensionless parameters, namely, the fluid annulus radius ratio (NR2), the
eccentricity (E), the Prandtl number (Pr), inlet fluid velocity (Uo), conductivity ratio
(KR) and thicknesses of the two walls (do and di).

For a fluid of a given Pr in an annulus of given NR2 and E, the solution starts by
calculating the corresponding values of hi and ho by means of the relations given in the
nomenclature. Selecting the numbers of increments in h and j directions (N and M,
respectively) the values of Dh and Dj can be computed by using the relations given in
the nomenclature. Similarly, for the solid walls, by selecting the values of NR1 and NR4

and the number of radial increments in the outer and inner walls and the number of
increments in the tangential (f) direction (NSO, NSI and M, respectively), the values of
DRo, DRi and Df can be determined. Assume a value for the uniform axial velocity at
the entrance Uo (i.e. F since F ¼ U oð1 2 NR2

oÞ, the inlet pressure will be Po ¼ 2U o=2,
since W ¼ V ¼ 0.

For each axial location (cross-section), the energy equations for the fluid
(equation (10)) and solids (equations (11) and (12)) are simultaneously solved for the
temperatures using Gauss-Seidel iteration. The solution starts by simultaneously
solving equations (10)-(12) to obtain the unknown values of uf, usi and uso. Within the
Gauss-Seidel iteration process, the temperature values of the cylindrical grid points at
the two interfaces are calculated using the principles of continuity of temperature and
heat flux. The temperature values of the bipolar grid points at both the interfaces are
computed by interpolating between the temperature values of the two neighboring
cylindrical grid points at both sides of each bipolar grid point. To solve for the two
unknowns P and U at the aforesaid axial location, the integral form of the continuity
equation (13) and the finite-difference form of the axial-momentum equation (8) are
used. The resulting set of algebraic equations is solved by a modified Gauss-Jordan
elimination scheme. Then j-Momentum equation (9) is solved for W-velocity
component using Gauss-Seidel iteration method. Finally, the continuity equation (7) is
used to evaluate V-component of velocity at all the interior grid points. These steps are
repeated to advance axially until the pressure defect (P) becomes zero indicating that
the channel exit has been reached and consequently the value of L is determined.

Results and discussion
Owing to the neglect of the axial diffusion terms ð›2=›Z 2 ¼ 0Þ; and the neglect of the
variations of pressure with the two transverse directions ð›P=›h ¼ ›P=›j ¼ 0Þ,
the Grashof number is inherent in the dimensionless formulation of the problem
ðGr* ¼ GrDh=l Þ and thus it is not explicitly needed for the solution. However, seven
other similarity parameters are explicitly required to solve the problem under
consideration. These are the fluid annulus radius ratio (NR2), the dimensionless
eccentricity (E), the dimensionless flow rate F (or effectively U o ¼ F=ð1 2 NR2

2Þ),
solid-fluid thermal conductivity ratio (KR), inner and outer cylinder walls thickness
(di and do) and the Parandtl number (Pr). However, one should recall that the inlet
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velocity (Uo) and hence the inlet pressure (Po) and the volumetric flow rate (F) are not
predetermined initial conditions independent of the channel height as in the case of
forced flows. Rather, each of them is dependent on the channel height (L) and the
applied thermal boundary conditions on the annulus walls. The numerical results to be
presented in this paper are for a fluid of Pr ¼ 0.7 in an annulus of cylinders having
walls thicknesses di ¼ 0.1 and do ¼ 0.2.

First of all, numerical experiments have been conducted to reach a
mesh-independent solution. In this regard, 12 different mesh sizes for the fluid
annulus and inner and outer solid walls were tested. Among all, the mesh sizes of
25 £ 25 (in h and j directions), 20 £ 25 (in r and (f directions) and 10 £ 25 (in r and
(f directions) for the fluid annulus, outer cylinder wall and inner cylinder wall,
respectively, were selected; representing the best compromise between time of
execution of the program and percentage difference (less than 1 percent in the value of
each of the inner wall heat at exit (HFi,ex), the outer wall heat flux at exit (HFo,ex), the
exit Nusselt number on the inner wall (Nui,ex), etc). Table I shows a summary for some
of these numerical experiments, taking the 30 £ 30 mesh as the reference. On the other
hand, it is known that near the annulus entrance large gradients exist. For, this reason
all the computer runs were made by taking very small steps near the entrance. Further,
downstream the axial step was increased several times as the flow moves away from
the entrance.

To check the adequacy of the present results, special runs were carried out
simulating the three different limiting cases of: conventional forced convection,
conjugate forced convection and conventional natural convection in the given eccentric
annuli. For both the conventional forced and the conventional natural convection cases,
the present computer code was made to run at very large values of solid-fluid thermal
conductivity ratio (KR ¼ 1,000) and very thin cylinder walls (di ¼ 0.001 and
do ¼ 0.002); thus the conjugate effect could be negligible. On the other hand, the
present computer code can simulate the forced convection cases (conventional or
conjugate) when the values of the inlet velocity Uo exceeds the corresponding limiting
values for natural convection (El-Shaarawi et al., 2001). The results and conclusions of
these special computer-code runs are as follows.

First, comparisons between the fully-developed forced convection pressure gradient
and heat transfer results available in the literature and the corresponding conventional
results (without conjugation) obtained by special runs of the present computer code
revealed that the maximum deviations between the obtained results and those reported
by Trombetta (1972), El-Shaarawi and Haider (2001) and Shah and London (1978) were
0.36, 0.12 and 1.34 percent, respectively, as shown in Table II. Moreover, the present
special computer-code results were also checked with the conventional forced
convection results obtained by El-Shaarawi et al. (1998) for the fully developed
mixed-mean temperature (um,fd); the maximum percentage difference was found to be
0.032 percent.

Secondly, the present computer code was validated for the conjugate forced
convection case in eccentric annuli by comparing the results obtained from a pertaining
special run with the corresponding developing and fully developed temperature profiles
across the widest gap (C ¼ 0) of El-Shaarawi and Haider (2001); excellent agreement
was observed as the maximum deviation between the obtained results and those of
El-Shaarawi and Haider (2001) never exceeded 0.23 percent.
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In the context of the above comparisons with forced convection results, one should
mention that in the forced-convection simulations there is no check on the value of the
dimensionless pressure with axial location (as in the free convection case); indeed
the dimensionless pressure continues is such forced flow cases to decrease in value
without any possibility of recovering back as occurs in the free convection flow.

Thirdly, a special computer run simulating the conventional natural convection
case was done. The obtained results for the channel height required to suck specific
flow rates under thermal boundary conditions of the first kind are compared in Figure 4
with the corresponding results of El-Shaarawi and Mokheimer (1999).

In order to show the conjugation effect on the heat transfer results, computer runs
were conducted for very thin walls, representing the conventional case, and very thick
walls, representing the conjugate case, at different values of eccentricity (E) and radius
ratio (NR2). Figure 5 shows the induced flow rate (F) plotted against the eccentricity for
very thin walls (di ¼ 0.001, do ¼ 0.002) and very thick walls (di ¼ 0.2, do ¼ 0.4) for
L ¼ 5 £ 1023. Another comparison is made in Figure 6 to show the effect of radius
ratios NR2. It is evident from these two figures that the conjugation effect cannot be
ignored in such cases. However, it is worth mentioning that the curves for thick and
thin walls in Figure 6 are closer to each other as compared to the curves in Figure 5.
This is because Figure 6 considers the thick walls as di ¼ 0.15 and do ¼ 0.3, which is
less than the thickness that has been taken in Figure 5, i.e. di ¼ 0.2 and do ¼ 0.4, due to
limitations on the annulus geometry at very large and very small values of radius ratio
(NR2). From these results, one can anticipate similar behavior for very large and small
values of thermal conductivity ratio (KR), representing the conventional and conjugate
cases, respectively.

A comparison between the conjugate and conventional results for the parameters L,
�Q, Nui;e and Nuo;e is presented in Table III. The table shows that the percentage

Figure 4.
Comparison of volumetric
flow rate versus channel
height as reported by
El-Shaarawi and
Mokheimer (1999) and the
corresponding results by a
special computer run
simulating conventional
free convection, N ¼ 20,
M ¼ 20, Pr ¼ 0.7,
NR1 ¼ 0.499, NR2 ¼ 0.5,
NR3 ¼ 1.0, NR4 ¼ 1.002,
KR ¼ 1,000, NSI ¼ 25,
NSO ¼ 25
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difference between the conjugate and conventional free convection results ranges from
0.1619 to 26.602 percent. Such percentage differences are also shown graphically in
Figure 7. This figure clearly indicates that increasing E increases the percentage
differences and this clearly supports the fact that conjugation effects increase with E.

Figures 8 and 9 show the important variation of induced flow rate with the channel
height for different values of the eccentricity for cases (I) and (O), respectively. It can be

Figure 6.
Variation of flow rate with
radius ratio for thick walls

(di ¼ 0.15, do ¼ 0.3) and
thin walls (di ¼ 0.001,
do ¼ 0.002) E ¼ 0.5,

Pr ¼ 0.7, Height
(L) ¼ 8 £ 1023, KR ¼ 1,

Case (I)
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Variation of flow rate with
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seen from the comparison shown in Figure 10 that, for a given channel height, the flow
rate induced is greater for case (O) than that for case (I). This can be attributed to the
larger heating surface in case (O) than that in case (I). In both cases (I and O), for given
radius ratio, conductivity ratio and channel height, increasing the eccentricity
increases the induced flow rate. A large value of eccentricity increases the velocity

Figure 7.
Percentage difference
between conjugate and
conventional cases for
different parameters ( �Q, L,
Nui;e, Nuo;e) (Case I)
NR2 ¼ 0.5, KR ¼ 10,
di ¼ 0.1, do ¼ 0.2,
F ¼ 0.0045
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E ¼ 0.1 3.5 26.25 19.2 17.5 10.52 10.80 5.64756 6.44226 2.35572 2.52587
4.0 30 25.1 24.0 12.20 12.60 5.34803 6.12708 2.46837 2.64127
5.0 37.5 42.1 36.0 15.82 15.20 5.06524 5.95278 2.65058 2.72283
6.0 45 70.7 65.0 19.40 19.00 4.89792 5.62494 2.76790 2.98279
7.0 52.5 125.2 116.0 22.73 22.50 4.79550 5.40027 2.83662 3.13310
8.0 60 265.7 260 25.78 25.50 4.74238 5.39579 2.87443 3.20440

E ¼ 0.5 4.0 30 32.1 28.5 12.12 12.00 5.49076 6.982 2.94044 3.575
5.0 37.5 48.8 43.6 14.90 14.60 5.26770 6.240 3.05893 3.563
6.0 45 74.2 67.5 18.20 17.90 5.17945 6.107 3.13193 3.622
7.0 52.5 113.1 102.0 21.53 21.40 5.11771 6.045 3.18674 3.669
8.0 60 175.5 158.0 24.74 24.70 5.06404 5.955 3.22938 3.739

E ¼ 0.7 3.5 26.25 23.5 24.1 10.86 11.40 7.53536 9.0083 3.76209 4.0521
4.0 30 35.7 32.1 12.10 12.80 5.93964 8.0924 3.38149 4.2705
5.0 37.5 53.1 46.0 14.40 14.10 5.63350 7.2976 3.54016 4.5904
6.0 45 76.6 68.0 17.32 16.90 5.54798 7.0683 3.59773 4.6493
7.0 52.5 109.2 98.0 20.50 20.10 5.51193 7.0450 3.62361 4.6391
8.0 60 155.3 141.0 23.74 23.50 5.48860 7.0479 3.64324 4.6302

Notes: Fixed parameters: NR2 ¼ 0.5, KR ¼ 10, di ¼ 0.1, do ¼ 0.2, Case (I)
Source: Mokheimer (1996)

Table III.
Values of L, �Q, Nui;e, and
Nuo;e for conjugate and
conventional cases at
different values of E
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asymmetry, which causes the resistance of flow to increase/decrease on the narrowest
(c ¼ 1)/widest (c ¼ 0) gap side of the annulus. The axial velocity profile develops with
increasing/decreasing values on the widest (c ¼ 0)/narrowest (c ¼ 1) gap side of the
annulus resulting in a net increase in average velocity and a higher heat transfer
coefficient. This is mainly due to the increase in heat transfer to the fluid by convection
in the widest gap (c ¼ 0). Consequently, the mean fluid temperature increases leading
to an increased flow rate. However, for very short channels in both cases (I and O) a
reverse trend occurs, i.e. increasing the eccentricity decreases the induced flow rate.
The reason is that for short channels with a large eccentricity, the axial velocity and
temperature profiles do not develop sufficiently. This consequently reduces the mean
bulk temperature (i.e. reduction of the buoyancy forces) and the induced flow rate.

Figure 9.
Variation of flow rate with

channel height for
different values of

eccentricities (Case O)
NR2 ¼ 0.5, di ¼ 0.1,
do ¼ 0.2, KR ¼ 10

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.001 0.002 0.003 0.004 0.005 0.006

Channel Height (L)

F

E=0.1

0.7

0.5
0.3

Figure 8.
Variation of flow rate with

channel height for
different values of

eccentricity (Case I)

0.0025

0.0035

0.0045

0.0055

0.0065

0.0075

0.0085

0.0095

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Channel Height (L)

F E=0.1

0.3

0.5

0.7
Heat transfer

in vertical
eccentric annuli

483



In the current problem the heat transfer from the hot surface is divided between the
cold surface and flowing fluid. Consequently, in the present situation there is no single
Nusselt number that can be correlated versus Rayleigh number as in the simple cases
of tube and flat plate. Accordingly, in the present work two Nusselt numbers are used
for the heat transfer through the inner and outer surfaces that bound the fluid annulus
(Nui and Nuo, respectively) in addition to the total heat absorbed by the fluid ( �Q) as it
passes through the annulus. The latter is frequently more important to engineers and is
therefore usually reported in the free convection literature. Figure 11 shows the total
heat absorbed by the fluid ( �Q) for case (I) versus the channel height (L) for four

Figure 11.
Total heat absorption
versus channel height for
different values of
eccentricity (Case I) NR2

¼ 0.5, di ¼ 0.1, do ¼ 0.2,
KR ¼ 10
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Comparison of flow rate
with channel height for
different eccentricities for
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dimensionless eccentricities. Taking into consideration that L is the reciprocal of the
modified Grashof number (Gr *) and that Pr is constant (0.7) in the present work, so
the abscissa of Figure 11 is related to the modified Rayeigh number (Gr * £ Pr). As can
be seen from this figure, the higher the value of the eccentricity for short channels the
less amount of heat gained by the fluid. This trend reverses for high channels
(large values of L). These are also true for case (O) as can be seen from Figure 12.
Again, the reason is that for high channels (large values of L), when the eccentricity
increases, the fluid flow at the widest gap side of the annulus develops with higher
values of velocity as compared to the narrowest gap (because the widest gap offers less
resistance to fluid flow). This increases the coefficient of heat transfer on the widest
gap side and enhances the ability of fluid to absorb more heat, thus causing more flow
rate to be induced in the channel. The opposite happens for short channels since the
flow does not find enough channel height to develop sufficient buoyancy effect to gain
more velocity in the widest gap (c ¼ 0) as eccentricity increases; this results in a
decrease in the heat absorbed by the fluid and directly affects the induced flow rate.

Figures 13 and 14 show the effect of the annulus radius ratio (NR2) on the
dimensionless flow rate for case (I). For given eccentricity, wall thicknesses and
conductivity ratio, increasing the annulus radius ratio increases the dimensionless flow
rate. Similar trends have also been obtained for case (O), as can be seen in Figure 15.
Such an increase in the dimensionless flow rate can be helpful in the cooling of
channels having the same conductivity ratio and walls thickness.

A fluid annulus radius ratio (NR2) is the ratio of the outer radius of the inner cylinder
to the inner radius of the outer cylinder (roi=rio). Therefore, an increase in this radius
ratio might imply a decrease in the annulus cross sectional area and consequently
smaller dimensional flow rate. This is clarified for cases (I) and (O) in Figure 16 by
converting the dimensionless flow rate into its dimensional form
(f ¼ pgGr rio 2 roið ÞF), for a value of Gr in the laminar range, Gr ¼ 106, and plotting
it against the radius ratio. On the other hand, increasing the radii roi and rio in such a
manner that the radius ratio remains constant, increases the annulus cross sectional area
and hence the dimensional flow rate, which cannot be explained by Figure 16.

Figure 12.
Total heat absorption

versus channel height for
different values of

eccentricity (Case O)
NR2 ¼ 0.5, di ¼ 0.1,
do ¼ 0.2, KR ¼ 10
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However, the dimensional flow rate per unit area for cases (I) and (O) has been calculated
and plotted against the corresponding radius ratios in Figure 17. This figure explains the
results stated in the previous paragraph as it shows that, whatever the radii maybe, the
flow rate per unit area increases as the annulus radius ratio is increased.

Finally, increasing the radius ratio (NR2) has a direct impact on the total heat
absorbed by the fluid as can be seen in Figures 18 and 19 for case (I). Similar trends can
be observed in Figure 20 for case (O).

Finally, a reader might be interested in the temperature profiles at different axial
locations along the channel as well as the temperature distributions at different cross

Figure 14.
Variation of flow rate with
channel height for radius
ratio ¼ 0.7 (Case I)
KR ¼ 10, di ¼ 0.1,
do ¼ 0.2, E ¼ 0.5
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Variation of flow rate with
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sections of the channel. Such profiles are shown at different axial (vertical) locations for
KR ¼ 1 in Figures 21 and 22 across the widest (c ¼ 0) and the narrowest (c ¼ 1)
gaps, respectively. The corresponding profiles for KR ¼ 10 are shown in Figures 23
and 24. For KR ¼ 10, Figures 23 and 24 show clearly the sudden change in the
temperature gradient at the solid-fluid interface.

Figure 15.
Variation of flow rate with

channel height for
different values of radius
ratio (Case O) KR ¼ 10,

di ¼ 0.1, do ¼ 0.2, E ¼ 0.5
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Conclusions
Conjugate laminar free convection heat transfer in vertical eccentric annuli has been
numerically investigated. A finite-difference algorithm has been developed to solve the
bipolar model equations. Numerical results have been presented for a fluid of Prandtl
number, Pr ¼ 0.7 in eccentric annuli. Geometry effects having been investigated by
considering fluid annuli having radii ratios NR2 ¼ 0.1 and 0.3, 0.5 and 0.7 and four
values of the eccentricity E ¼ 0.1, 0.3, 0.5 and 0.7. Moreover, practical ranges of the
solid-fluid conductivity ratio (KR) and the wall thicknesses that are commonly
available in pipe standards have been investigated.

Figure 17.
Dimensional flow rate per
unit area varying with
radius ratio (NR2) (Cases I
and O) KR ¼ 10, di ¼ 0.1,
do ¼ 0.2, E ¼ 0.5, Axial
(vertical)
Location ¼ 2 £ 1023 (for
cases I and O)
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Figure 18.
Total heat absorption
versus channel height for
different values of radius
ratio (Case I)
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The results of the present work (conjugate case) have explored distinguished
differences from those corresponding to the conventional case (without conjugation).
Such results show that, for a given channel height (L), increasing the eccentricity
causes an increase in the induced flow rate (F). Similar trend is observed for the total
heat absorbed by the fluid ( �Q) with the eccentricity. On the other hand, increasing the
radius ratio (NR2) causes the induced flow rate (F) and the total heat absorbed ( �Q) to
increase. Finally, the obtained results have also shown that heating the outer cylinder
wall of the eccentric annulus is more useful for inducing flow (thermosiphons) than
heating its inner wall.

Figure 19.
Total heat absorption

versus channel height for
radius ratio 0.7 (Case I)
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Figure 21.
Temperature profile
across the widest gap
(c ¼ 0) at different axial
(vertical) locations for case
(I), L ¼ 2.24 £ 1022

KR ¼ 1, di ¼ 0.1, do ¼ 0.2,
E ¼ 0.5, NR2 ¼ 0.5
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Figure 22.
Temperature profile
across the narrowest gap
(c ¼ 1) at different axial
(vertical) locations for case
(I), L ¼ 2.24 £ 1022 KR
¼ 1, di ¼ 0.1, do ¼ 0.2,
E ¼ 0.5, NR2 ¼ 0.5
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Figure 23.
Temperature profile

across the widest gap
(c ¼ 0) at different axial

(vertical) locations for case
(I), L ¼ 1.68 £ 1022

KR ¼ 10, di ¼ 0.1,
do ¼ 0.2, E ¼ 0.5,
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Figure 24.
Temperature profile

across the narrowest gap
(c ¼ 1) at different axial

(vertical) locations for case
(I), L ¼ 1.68 £ 1022
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